Sac2/INPP5F is an inositol 4-phosphatase that functions in the endocytic pathway
نویسندگان
چکیده
The recruitment of inositol phosphatases to endocytic membranes mediates dephosphorylation of PI(4,5)P2, a phosphoinositide concentrated in the plasma membrane, and prevents its accumulation on endosomes. The importance of the conversion of PI(4,5)P2 to PtdIns during endocytosis is demonstrated by the presence of both a 5-phosphatase and a 4-phosphatase (Sac domain) module in the synaptojanins, endocytic PI(4,5)P2 phosphatases conserved from yeast to humans and the only PI(4,5)P2 phosphatases in yeast. OCRL, another 5-phosphatase that couples endocytosis to PI(4,5)P2 dephosphorylation, lacks a Sac domain. Here we show that Sac2/INPP5F is a PI4P phosphatase that colocalizes with OCRL on endocytic membranes, including vesicles formed by clathrin-mediated endocytosis, macropinosomes, and Rab5 endosomes. An OCRL-Sac2/INPP5F interaction could be demonstrated by coimmunoprecipitation and was potentiated by Rab5, whose activity is required to recruit Sac2/INPP5F to endosomes. Sac2/INPP5F and OCRL may cooperate in the sequential dephosphorylation of PI(4,5)P2 at the 5 and 4 position of inositol in a partnership that mimics that of the two phosphatase modules of synaptojanin.
منابع مشابه
Jcb_201409064 1..11
Phosphoinositides (PIs), the seven metabolites resulting from the phosphorylation of phosphatidylinositol at the 3, 4, and 5 position of the inositol ring, are key regulatory phospholipids localized on the cytosolic leaflets of cellular membranes. Via interactions with proteins mediated by their differentially phos phorylated headgroups, they control various aspects of cell phys iology includ...
متن کاملSpatiotemporal control of phosphatidylinositol 4-phosphate by Sac2 regulates endocytic recycling
It is well established that the spatial- and temporal-restricted generation and turnover of phosphoinositides (PIs) by a cascade of PI-metabolizing enzymes is a key regulatory mechanism in the endocytic pathway. Here, we demonstrate that the Sac1 domain-containing protein Sac2 is a PI 4-phosphatase that specifically hydrolyzes phosphatidylinositol 4-phosphate in vitro. We further show that Sac2...
متن کاملInositol Polyphosphate-5-Phosphatase F (INPP5F) inhibits STAT3 activity and suppresses gliomas tumorigenicity
Glioblastoma (GBM), the most common type of primary malignant brain tumors harboring a subpopulation of stem-like cells (GSCs), is a fast-growing and often fatal tumor. Signal Transducer and Activator of Transcription 3 (STAT3) is one of the major signaling pathways in GSCs maintenance but the molecular mechanisms underlying STAT3 deregulation in GSCs are poorly defined. Here, we demonstrate th...
متن کاملInpp5f is a polyphosphoinositide phosphatase that regulates cardiac hypertrophic responsiveness.
RATIONALE Cardiac hypertrophy occurs in response to a variety of extrinsic and intrinsic stimuli that impose increased biomechanical stress. The phosphatidylinositol 3-kinase (PI3K)/Akt pathway has previously been strongly associated with hypertrophic signaling in the heart, and with the control of cell size in multiple contexts. This pathway is tightly regulated by many factors, including a ho...
متن کاملPI(4)P gets Sac-rificed in the name of endocytic recycling
Phosphoinositide (PI) lipids regulate a wide variety of cellular processes, from cell signaling to cytoskeletal dynamics, by controlling the identity and properties of cellular membranes. A large number of PI kinases and phosphatases restrict the distribution of PI species and give each cellular compartment its own, distinct PI signature. When vesicles are transported from one compartment to an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 209 شماره
صفحات -
تاریخ انتشار 2015